沈阳鸿宇科技有限公司

【干货分享】数字化成熟度评估模型一文读尽

发布时间:2022-01-21 文章来源:鸿宇科技 浏览次数:1923

       本文一共提供了CMM、DMM、DCMM、DCAM、MD3M、DataFlux、IBMMMI、DSMM、IOMM、中新联团标、毕马威&阿里数智化转型框架、普华永道企业数字化成熟度评估架构、华为ODMM共13个评估模型。

       近两年数字化转型非常热,大家关注的问题都集中在:有哪些数字化转型的方法和技术?企业如何成功实现数字化转型?数字化转型过程如何避免踩坑?数字化转型有没有捷径?数字化转型到底该从哪里开始?……

       说实话,这些问题根本没有答案。

       虽然目前很多企业都已启动了数字化转型战略,但对大多数企业而言,数字化转型都是“摸着石头过河”,根本没有可供借鉴的经验。即便是具有数据基因的科技互联网巨头,他们也在谈数字化转型,也就是说科技公司也不能说自己是数字化企业。而对于那些号称是成功转型的企业,其实也只是比其他企业多走了一步。

01如何界定数字化转型是否成功?

       麦肯锡的一份报告指出:企业数字化转型成功率仅为20%。

       也就是说,80%的企业数字化转型都失败了。

       数字化转型成功或失败,不好界定!

       如何定义数字化成功?可能不同的人会有不同的理解。

       完成了数字化的绩效目标,算转型成功吗?即使没有建立数据思维、缺少数字文化。

       建立了数字化组织,配置了数字化人才,培育了数字化文化,算转型成功吗?即使数字化战略目标没有实现。

       搭建了数字化基础环境,使用了数字化技术(如云计算、大数据、AI等),算转型成功吗?即便业务决策用到了数据。

       数字化成功或失败,不能从一个维度考量!

       在笔者看来:企业数字化转型不是从0到1,而是从1到100。转型是一个过程,场景从简单到复杂,应用从局部到广泛,持续优化、逐步成长。

       也就是说,虽然不好界定数字化转型的成功或失败,但是数字化是有成长周期的,是一个从萌芽,不断生长,不断成熟的过程。而企业数字化成熟度的评估,就是帮助企业找到数字化到底位于何处,还有哪些不足,应该从哪里改进等问题的答案。

02CMMI成熟度评估模型

       提到“成熟度评估模型”,不得不提一下能力成熟度模型的鼻祖——CMM。可以说,几乎所有成熟度模型都借鉴了CMM的思路,基本都是将所涉及的能力(例如:软件能力、数据治理能力、数字化能力)划分为多个领域,每个领域又可以划分多个子领域,每个子领域又可以分为多个评估指标。然后综合这些评标进行评估,从而得到该领域的成熟度情况。而所谓成熟度就是几个可以逐步提升的等级(CMM示例),如下图所示:


能力成熟度模型集成(CMMI)

03DMM 数据管理能力成熟度等级


       1. Performed(已执行级)

       主要特点:数据作为项目实施的需求进行管理。

       解读分析:这个阶段,企业和组织的数据管理过程是临时性的,主要在项目级别执行。没有形成跨业务领域数据管理流程,数据管理过程是被动的,例如,对于数据质量的修复。关于数据管理的基本改进可能存在,但改进尚未在企业或组织范围内进行明确、宣贯和推广。

       2. Managed(可管理级)

       主要特点:企业意识到数据作为企业关键资产的重要性,局部实现了常态化管理。

       解读分析:这个阶段,数据资产化的观念被企业或组织所认可,企业尝试并开展了数据管理的相关工作。按照企业的目标制定了相关政策和执行过程,雇佣有专业知识的数据管理人员来对数据进行管理,使得核心数据能够受控输出;数据管理在企业局部范围开展,涉及部分业务部门或利益相关者;部分数据开始进行数据的监控、控制和过程审查,估过程是否符合其数据管理的要求。

       3. Defined (可定义级)

       主要特点:数据在组织级被视为关键生产要素。

       解读分析:随着时间的推移,数据已经被企业视为除了人员、资金和物资的第四种生产要素。企业内部已经建立和改进了一些数据管理的流程,改进了数据质量。根据企业的数据战略和指导方针,从一组标准的数据管理过程中能够定制满足企业特定需求的数据管理方法,并赋以执行。

       4. Measured (可度量级)

       主要特点:数据被视为竞争优势的来源分析。

       解读分析:这个阶段,企业已基本建立起可预测和度量数据的指标体系,以提升数据质量。对不不同类别的数据启动有差异的管理流程,企业使用了元数据管理、数据质量管理、主数据管理等应用,对数据的业务含义、业务规则、质量规则进行了统一的描述,在公司范围内形成一致性的理解,并在整个数据的生命周期中进行管理。

       5. Optimized(优化管理级)

       主要特点:在一个充满活力和竞争的市场中,数据被视为生存的关键,持续提升和优化。

       解读分析:通过创新性的改进,企业数据管理能力不断提高。通过数据管理能力的增强反馈用于推动业务增长和决策能力的提升,企业的数据管理能力已经发展成为行业的标杆,可以在整个行业内进行先进经验的分享。

       (4)DMM 架构和过程域

       DMM模型提供了数据管理的最佳实践路线图,帮助组企业构建、改进和衡量其企业数据管理能力。该模型围绕着数据管理成熟度(DMM)模型展开,该模型是一个综合的数据管理实践框架,分为六个关键类别,帮助组织对其能力进行基准评测,找出优势和差距,并利用其数据资产提高业务绩效。


       DMM模型包括25个过程域,由20个数据管理过程域和5个支持过程域组成,按管控维度不同分为:数据战略、数据治理、数据质量、数据运营、平台与架构、支撑流程6个类型,如下图所示:


04DCMM数据管理能力成熟度评估模型

       DCMM模型,按照组织、制度、流程、技术对数据管理能力进行了分析、总结,提炼出组织数据管理的八大过程域,即:数据战略、数据治理、数据架构、数据应用、数据安全、数据质量管理、数据标准、数据生命周期。这八个过程域共包含28个过程项,441项评价指标。


       数据战略:数据战略规划、数据战略实施、数据战略评估

       数据治理:数据治理组织、数据制度建设、数据治理沟通

       数据架构:数据模型、数据分布、数据集成与共享、元数据管理

       数据应用:数据分析、数据开放共享、数据服务

       数据安全:数据安全策略、数据安全管理、数据安全审计

       数据质量:数据质量需求、数据质量检查、数据质量分析、数据质量提升

       数据标准:业务数据、参考数据和主数据、数据元、指标数据

       数据生存周期:数据需求、数据设计和开放、数据运维、数据退役

       DCMM的能力等级划分

       与CMMI类似,DCMM模型将组织的数据能力成熟度划分为初始级、受管理级、稳健级、量化管理级和优化级共5个发展等级,帮助组织进行数据管理能力成熟度的评价。


       DCMM与国外的数据管理能力成熟度模型相比,DCMM是具有中国特色的数据管理模型。

       DCMM建设概念图

       如果你的企业要做DCMM评估,可以找国家工业信息安全发展研究中心,是全国仅有的6家拥有DCMM评估资质的单位。

05DCAM 数据管理能力评价模型

       数据管理能力评价模型(datamanagement capability assessment model,DCAM)是由EDM主导,组织金融行业企业参与编制和验证,基于众多实际案例的经验总结来进行编写的。DCAM首先定义了数据能力成熟度评估涉及的能力范围和评估的准则,然后从战略、组织、技术和操作的最佳实践等方面描述了如何成功地进行数据管理。最后,又结合数据的业务价值和数据操作的实际情况定义数据管理的原则。


       在DCAM1.0中,主要将数据管理能力划分为八个职能域:

  • 数据管理策略
  • 数据管理业务案例
  • 数据管理程序
  • 数据治理
  • 数据架构
  • 技术架构
  • 数据质量
  • 数据操作
  • DCAM2.0 框架

       如上图所示,在DCAM2.0中,主要强调团队协作(流程)、标准执行和资金支持,DCAM2.0 分为以下职能域(7大组件):

  • 数据管理战略与业务案例
  • 数据管理流程与资金
  • 数据架构
  • 技术架构
  • 数据质量管理
  • 数据治理
  • 数据操作
06MD3M 主数据管理能力成熟度模型

       MD3M成熟度模型参考了COBIT(IT成熟度标准)、Oracle、DataFlux等已有模型,将主数据管理的成熟度划分为5级,如图:


       说明:以下是对MD3M成熟度等级的解读,期间为了便于大家更好的理解,会引用一些真实的“微案例”。“微案例”涉及的客户名称已做了相关脱敏,请看到的老板不要对号入座。

       1、Initial 初始级

       处于初始级的企业,主数据问题早已存在并且在企业里被提出,但是企业没有认意识到要进行主数据管理,或者不知道该如何管理主数据。当然也有一部分企业的员工甚至不知道主数据是个啥。

       2、Repeatable 应用级

       企业已经认识到了主数据的重要性,并且开始在项目中进行主数据的治理。但是这种管理只是在个别项目中进行,没有推广应用到其他部门或系统中。这种情况在很多企业普遍存在,例如:X企业上了一套CRM,只是在CRM中将客户主数据进行了整理和清洗,并且用一定流程管理起来了,但是CRM的客户数据并没有与财务系统、ERP系统等系统打通。

       3、defined process 已定义级

       企业充分认识到了主数据的问题、影响和价值,并对主数据管理第一次在企业战略层面提出,企业开始积极的思考主数据该如何管理,并引入主数据管理工具,进行主数据的试点应用。笔者接触了很多主数据的客户,部分客户是已经处于第三级的。笔者发现,处于这个层级的客户有一个共同点,就是对于主数据比较迷茫。正如Y企业CIO吐槽:“我们都认识到了主数据的重要性,并且主数据系统已经运行了3年,但是主数据的价值好像并没有发挥出来。还有就是我们主数据平台刚上的时候,主数据质量还行,但是现在去看已经和3年前没太大差别了”

       4、managed and measurable 管理和度量级

       企业制定了一套主数据管理的最佳实践,主数据被企业的核心资产进行管理,对于主数据的申请、审批、采集、分发制定了明确的流程和规范,对于主数据的数据质量有着明确的度量标准和考核制度。这里,我们分析下上述案例Y企业CIO的迷茫,Y企业之所以存在对主数据的困惑,一方面是认知问题,关于主数据重要性只是局部认知,比如:领导认识到了、员工没有认识到;IT人员认识到、业务人员没认识到;CIO认识到了,CEO没有认识到……;另一方面,主数据管理并不是上一个系统就能万事大吉的,是需要企业持续的运营才能见效的,配套的标准、流程、制度、考核是必不可少的。

       5、optimized 优化级

       该层级称为:持续优化级。主数据管理是一个持续提升的过程,不可一蹴而就。我们看到主数据做的非常成功的企业,都有两个特点:1)再一开始做主数据的时候,企业对要实现的业务目标和管理的主数据范围就十分明确,一般都是选1~2个核心主数据进行试点实施。2)试点实施阶段企业会建立起一整套的主数据实施最近实践(组织的建设、数据标准、管理流程和制度、运维规范、运营及考核),试点成功再将这套最佳实践复制到企业的其他业务域,实现主数据全域覆盖。主数据的实施过程是企业数据战略落地的过程,绝对不是购买一套工具就能解决的问题,方法、组织、标准、制度、流程、技术与工具样样不可缺少。我们看到,有的企业实施主数据借助了外部咨询公司的力量,由咨询公司帮助规划实施范围、建立制度和流程、制定实施路线图等,取得了不错的效果。【有需要做数字化咨询的老板请找罗百辉老师】

       关键主题和重点领域

       MD3M采用自下而上的方法制定了主数据管理能力成熟度评估的5个关键主题和13重点领域,见下图:


       与我们之前分享的DMM模型不同的是,MD3M更关注于主题,而不是过程。因为不同公司的流程可能不同,如果MD3M过于专注于流程,它将不再是通用的。MD3M模型基本涵盖了主数据管理的所有方面,适用于管理主数据的所有公司,尤其是大型公司。对于小型企业来说,实施精心设计的MDM方法的所需的成本可能将被夸大。

07DataFlux 主数据管理成熟度模型

       该模型源自《DataFlux White Paper-MDM-Components-Maturity-Model》,本白皮书探讨了基于提供MDM服务的能力的成熟度级别,通过根据MDM相关组件层的成熟度来表示它们,企业管理层可以针对所需的MDM成熟度级别,设计开发一个主数据管理的实施路线图,用于指导企业主数据管理的实施和成功落地。DataFlux模型从数据架构、数据治理、数据管理、数据识别、数据整合、业务流程管理六个层面定义了主数据管理成熟度的核心影响要素,如下图所示:


       1、体系结构

       MDM体系结构包含三层,即:主数据模型、MDM系统架构和MDM服务架构。

       (1)主数据模型

       要创建主数据时,需要将企业中相关实体存在的各种不同格式和结构的所有数据元素合并到一个能够适应这些差异的集中资源中,然后反馈到这些不同的表示中。这意味着必须有一个统一的主模型来充当核心存储库。数据模型是MDM工作的复杂但不可分割的一部分,需要将异构系统间的相关关键元素合并到一个模型中,主数据模型要能够适应相关异构系统的不同应用需求。推荐的做法是取各个系统主数据元素的交集部分+主数据的自然属性形成主数据模型。

       (2)MDM系统架构

       贯穿于主数据管理的整个生命周期(创建、变更、访问、注销),为主数据提供基础的管理和维护功能,可以针对特定的场景或应用(例如:产品或客户的管理)设置增强性功能。例如,某些属性信息可以在不同的时间通过不同的应用系统收集,如果允许不同的应用系统有数据的创建权限,则可以为每个应用系统调整创建服务以获取主数据所需的内容。这涉及多源头数据的归集,操作上需要慎重。我一般建议将主数据源头统一,如果实在统一不了,可以通过系统自动提取+人工干预的方式完成主数据属性的整合,形成完整数据视图。

       (3)MDM服务架构

       异构应用系统使用所需的数据对象服务可能会有一定的差异,所需的数据服务也有进一步的要求,例如同步、序列化访问控制、集成与整合、数据访问。通过部署可重用并且与业务流程关联的主数据服务,将业务应用系统分层到数据对象服务层,并对数据服务进行权限的划分。主数据服务架构关键点在于流程驱动、按属性授权。主数据管理本身也是一项业务活动,需要根据相应的业务规则按顺序流转;权限划分是指不同流程节点可以配置不同的数据属性,并且这些属性可以分配给不同的角色/岗位进行管理。

       2、数据治理

       DataFlux 认为数据的治理和监督应当作为企业千年发展目标的政策。由于MDM是一项企业倡议,因此必须保证利益相关者将遵守、管理、参与主数据的治理和数据共享。跨不同业务域应用的主数据管理将解决数据管理、所有权、合规性、隐私、数据风险、数据敏感性、元数据管理、主数据管理以及数据安全等问题。这些问题中的每一个都侧重于将数据技术和管理监督结合起来,确保组织遵守定义的制度和政策。

       (1)数据标准化

       对企业数据元的标准化定义,明确数据语义、取值。评估组织数据元素信息并将这些信息编制成业务元数据,形成了最终驱动和控制主数据对象的模型。有了这些数据元标准化定义,组织就了解了如何将这些定义解析为主数据的唯一视图。

       (2)元数据管理

       识别数据元名称、定义和其他相关属性的过程,除了收集有关潜在可用的大量数据元素的标准技术细节外,企业还需要确定: 每个数据元的业务用途, 哪些数据元定义涉及相同的概念, 不同应用程序如何创建、读取、修改或失效每个数据元,业务流程中的数据质量特征、检查和监控位置,等等这一系列的过程都是元数据管理。主数据管理的各个过程都是围绕元数据模型开展的。

       (3)数据质量

       业务绩效和运营生产力依赖于高质量的数据——在组织层面——成为任何MDM计划的核心能力。MDM的成功依赖于数据治理,但治理可以跨不同的业务域应用,为企业范围的部署提供规模经济。治理的各个方面至关重要,因为所有权模型和监督机制确保MDM环境中的参与者意识到信息的质量得到了积极管理。

       3、数据管理

       (1)唯一身份识别

       每一个主数据对象类型都对应与真实世界的一个实体对象,每个实体对象都有一个唯一识别的身份,这意味着在主数据资源库中,需要为每个主数据对象提供相应的标识信息,用来识别和标识数据对象的唯一性。

       (2)数据关系

       主数据系统应具备数据关系管理的能力,例如:客户之间的关联关系,供应商与所提供产品的关系等等。这些关系反映在链接层次结构中,并提供支持这些连接管理的服务组件。笔者认为:“关系型主数据将在主数据管理中扮演越来越重要的角色”。

       (3)迁移管理

       与业务应用系统不同,主数据的集成、上线是一个需要过渡的过程。无论是逐步的过渡还是彻底的使用新标准、新体系,数据迁移计划通常都会使旧体系版本与标准化后的版本同时运行一段时间,以确保对新版本正确地满足业务需求的提高信心。

       4、主数据建立

       (1)标识解析

       标识解析是指能够将两个或多个数据元素表示可以解析为唯一对象的一个表示,即:通过一定的数据元素的组合进行主数据的唯一性识别。标识解析是一项重要的主数据管理技术,目前该技术已被成功应用到国家工业互联网的战略布局中,通过将标识解析与互联网相结合,通过为每个机器、产品、零部件设置网络虚拟“身份证”,支持通过“身份证号”实现物料追溯、产品追踪,从而实现跨地域、跨行业、跨企业的信息共享。

       (2)数据规则

       在确定了数据的解析标识后,数据的规则算法就被应用到大量的记录中。  有一些规则可以被视为自动匹配,这些规则不仅依赖于相似性的量化,而且必须根据应用程序定义,数据规则用于数据的建立和数据的整合过程。

       (3)查重与合并

       使用标识解析来检查企业数据集,以区分表示唯一实体的记录,然后将其加载到规范表示中。应用数据规则寻找相似的数据记录,类似的记录要通过算法来鉴定每个数据属性中的值的相似度,为主数据的查重和合并过程铺平了道路。

       5、主数据整合

       主数据的目标不仅在于支持多个应用系统的集成,还能够为数据分析提供高质量的主数据。MDM系统建立数据服务层的核心主实体为建立一组分层的信息服务提供基础,以支持业务应用的快速和高效的开发。

       (1)与数据源的集成

       建立一个MDM系统将主数据统一管理起来,实现单一源头的主数据管理,而不使用这些数据是没有意义的,建立单一数据源的一个驱动因素是建立一个可以在整个企业中共享的高质量数据资产。这个目标需要双向数据流:主数据必须很容易地进入主数据库,并且企业应用程序也必须同样容易地访问这些数据。MDM系统必须以最小破坏性的方式适应现有的应用程序基础架构,同时提供一个标准化的路径,进行数据的转换和同步,为应用系统提供数据服务。

       (2)主数据集成服务

随着MDM的深入应用,新的应用程序越来越多地依赖主数据对象及其相应功能的来支持新的业务体系结构设计。标准化的主数据减少了对传统面向数据的问题(例如,数据访问和操作、安全和访问控制或策略管理),使用MDM服务层整合应用系统,被越来越多的企业所青睐,这种方法还将为现有系统的整合和未来系统的设计提供额外的价值。

       6、业务流程管理

       基于业务流程驱动的主数据管理是MDM的主要手段。MDM系统设计中的一个关键因素是确保系统是业务驱动的,尽管MDM是一种技术,但人们普遍认为,在不将主数据管理的功能组件链接到相应的业务流程模型的情况下实施主数据管理是一种无用的活动,进一步强调了“流程驱动”在主数据管理中的重要性。

       (1)流程模型

       业务流程模型是一种逻辑表示,它以一种方式描述业务流程,并在适当的时间将适当的细节传达给适当的人。通常列举所涉及的过程、流程的输入、控制过程等方面、作为过程结果出现的事件以及过程的预期输出。本质上MDM也是一项业务活动,不同的主数据需要在不同的时间、由不同的人维护和管理不同的数据元素,而这个过程是依靠流程模型来驱动的。

       (2)业务规则

       在任何业务流程模型中,用于执行特定操作的逻辑将主数据对象的值的评估和定义的控件结合在一起。检查这些值以确定要采取的操作,这些操作将创建新值并触发新控件。

       (3)MDM业务组件层

       在通过业务流程建模和集成组件的定义和需求以及通过基于规则的系统实现业务规则的基础上,是业务组件层。在这一层,我们可以开始创建更复杂的可重用业务服务,包含数据的映射、转换、同步、访问等。

       三、DataFlux 定义的主数据管理能力等级

       DataFlux定义成熟度模型的目的并不是提供一个基准来衡量所有MDM成熟度能力。相反,许多组织已经设计、架构和部署了所描述功能的相关版本。因此,成熟度级别描述了如何为主数据的存储和利用已部署的组件或服务。同时,它还指出了促进更复杂的应用系统对主数据依赖所需的功能和组件。